
Creating and Downloading User-Data Files

Agilent Technologies
Signal Generators

This guide applies to the following signal generator models:

Due to our continuing efforts to improve our products through firmware and hardware revisions, signal generator design
and operation may vary from descriptions in this guide. We recommend that you use the latest revision of this guide to
ensure you have up-to-date product information. Compare the print date of this guide (see bottom of page) with the latest
revision, which can be downloaded from the following websites:

N5161A/62A/81A/82A/83A MXG Signal
Generators

E4428C/38C ESG Signal Generators

E8257D/67D PSG Signal Generators E8663B Analog Signal Generator

http://www.agilent.com/find/psg http://www.agilent.com/find/mxg

http://www.agilent.com/find/e8663b http://www.agilent.com/find/esg
Manufacturing Part Number: E4400- 90651

Printed in USA

August 2008

© Copyright 2006–2008 Agilent Technologies, Inc.

Notice
The material contained in this document is provided “as is”, and is subject to being changed, without
notice, in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either
express or implied with regard to this manual and to any of the Agilent products to which it
pertains, including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or any of the Agilent products
to which it pertains. Should Agilent have a written contract with the User and should any of the
contract terms conflict with these terms, the contract terms shall control.
ii

Contents
Creating and Downloading User–Data Files

Overview .2

Signal Generator Memory .3
Memory Allocation .5

Memory Size .6

Checking Available Memory .7

User File Data (Bit/Binary) Downloads (E4438C and E8267D) .9
User File Bit Order (LSB and MSB). 10

Bit File Type Data . 10

Binary File Type Data. 13
User File Size . 14

Determining Memory Usage for Custom and TDMA User File Data 15

Downloading User Files . 18
Command for Bit File Downloads . 21

Commands for Binary File Downloads . 22

Selecting a Downloaded User File as the Data Source . 23
Modulating and Activating the Carrier . 24

Modifying User File Data . 24

Understanding Framed Transmission For Real–Time TDMA . 27
Real–Time Custom High Data Rates . 31

Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) . 33

Understanding PRAM Files . 34

PRAM File Size . 36
SCPI Command for a List Format Download . 38

SCPI Command for a Block Data Download . 38

Selecting a Downloaded PRAM File as the Data Source . 41
Modulating and Activating the Carrier . 42

Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory 42

Extracting a PRAM File . 42
Modifying PRAM Files . 45

FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D) 46

Data Requirements . 46

Data Limitations . 46
Downloading FIR Filter Coefficient Data . 46

Selecting a Downloaded User FIR Filter as the Active Filter. 47

Save and Recall Instrument State Files . 49

Save and Recall SCPI Commands . 49
Save and Recall Programming Example Using VISA and C# . 50

User Flatness Correction Downloads Using C++ and VISA . 60

Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only) 64
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide iii

Contents
User File Download Problems. 64
PRAM Download Problems. 66

User FIR Filter Coefficient File Download Problems . 67
 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guideiv

Creating and Downloading User–Data Files

NOTE Some features apply to only the E4438C with Option 001, 002, 601, or 602 and E8267D with
Option 601 or 602. These exceptions are indicated in the sections.

On the Agilent MXG, the internal baseband generator speed upgrade Options 670, 671, and
672 are option upgrades that require Option 651 and 652 to have been loaded at the factory
(refer to the Data Sheet for more information). Any references to 651, 652, or 654 are
inclusive of 671, 672, and 674.

The following sections and procedures contain remote SCPI commands. For front panel key
commands, refer to the User’s Guide, Key and Data Field Reference (ESG, PSG, and
E8663B), or to the Key Help in the signal generator.

For the N5161A/62A the softkey menus and features mentioned in this chapter are only
available through the Web–Enabled MXG or via SCPI commands. Refer to the Programming
Guide and to the SCPI Command Reference.

This information is also available in the signal generator’s Programming Guide.

This manual explains the requirements and processes for creating and downloading user–data, and
contains the following sections:

• User File Data (Bit/Binary) Downloads (E4438C and E8267D) on page 9.

• Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) on page 33.

• FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D) on page 47.

• Save and Recall Instrument State Files on page 50.

• User Flatness Correction Downloads Using C++ and VISA on page 61.

• Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only) on page 65.
1

Creating and Downloading User–Data Files
Overview
Overview
User data is a generic term for various data types created by the user and stored in the signal
generator. This includes the following data (file) types:

Bit This file type lets the user download payload data for use in streaming or framed
signals. It lets the user determine how many bits in the file the signal generator
uses.

Binary This file type provides payload data for use in streaming or framed signals. It
differs from the bit file type in that you cannot specify a set number of bits.
Instead the signal generator uses all bits in the file for streaming data and all bits
that fill a frame for framed data. If there are not enough bits to fill a frame, the
signal generator truncates the data and repeats the file from the beginning.

PRAM With this file type, the user provides the payload data along with the bits to
control signal attributes such as bursting. This file type is available for only the
real–time Custom and TDMA modulation formats.

FIR Filter This file type stores user created custom filters.

State This file type lets the user store signal generator settings, which can be recalled.
This provides a quick method for reconfiguring the signal generator when
switching between different signal setups.

User Flatness
Correction This file type lets the user store amplitude corrections for frequency.

Prior to creating and downloading files, you need to take into consideration the file size and the
amount of remaining signal generator memory. For more information, see “Signal Generator Memory”
on page 3.
2 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Signal Generator Memory
Signal Generator Memory
The signal generator provides two types of memory, volatile and non–volatile.

NOTE User BIT, and User PRAM references are only applicable to the E4438C with Options 001,
002, 601, or 602, and E8267D with Options 601 or 602.

User FIR references are only applicable to the N5162A and N5182A with Options 651, 652,
or 654, E4438C with Options 001, 002, 601, or 602, and E8267D with Options 601 or 602.

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or
pattern RAM (PRAM). Refer to Table 1 for the file types that share this memory:

Non–volatile Storage memory where files survive cycling of the signal generator power. Files
remain until overwritten or deleted. Refer to Table 2 for the file types that share
this memory:

Table 1 Signal Generators and Volatile Memory File Types

Volatile Memory Type Model of Signal Generator

N5162A N5182A
with Option
651, 652, or 654

E4438C with

Option 0011,

0021, 601, or
602

1.Options 001 and 002 apply to only the E4438C ESG.

E8267D Option
601 or 602

All Other

models2

2.N5161A, N5181A, N5183A, E8663B, E4428C, and the E8257D.

I/Q x x x –

Marker x x x –

File header x x x –

User PRAM – x x –

User Binary x x x –

User Bit – x x –

Waveform Sequences

(multiple I/Q files played together)

n/a3

3.Waveform sequences are always in non–volatile memory.

n/a3 n/a3 –
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 3

Creating and Downloading User–Data Files
Signal Generator Memory
Table 2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5162A N5182A
with Option
651, 652, or 654

E4438C with

Option 0011,

0021, 601, or
602

1.Options 001 and 002 apply to only the E4438C ESG.

E8267D Option
601 or 602

All Other

models2

2.N5161A, N5181A, N5183A, E8663B, E4428C, and the E8257D.

I/Q x x x –

Marker x x x –

File header x x x –

Sweep List x x x –

User PRAM – x x –

User Binary x x x –

User Bit – x x –

User FIR x x x –

Instrument State x x x x

Waveform Sequences

(multiple I/Q files played together)

x x x –
4 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Signal Generator Memory
The following figure shows the signal generator’s directory structure for the user–data files.

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a user–data file
with 60 bytes uses 1024 bytes of memory. For a file that is too large to fit into 1024 bytes, the signal
generator allocates additional memory in multiples of 1024 bytes. For example, the signal generator
allocates 3072 bytes of memory for a file with 2500 bytes.

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, files can cause the signal generator to allocate more memory than what is
actually used, which decreases the amount of available memory.

User–data blocks consist of 1024 bytes of memory. Each user–data file has a file header that uses
512 bytes for the Agilent MXG, or 256 bytes for the ESG/PSG in the first data block for each
user–data file.

Non–Volatile Memory (Agilent MXG)

On the N5182A, non–volatile files are stored on the non–volatile internal signal generator memory
(i.e. internal storage) or to the USB media, if available. The Agilent MXG non–volatile internal

FIR STATE USERFLAT

USER

BBG1

Volatile memory directory

WAVEFORM/PRAM

Root directory

Volatile memory data

Agilent MXG (Only): Internal

(WFM1)

STATE USERFLAT WAVEFORMFIRBIN BIT

BIN

(i.e. Nonvolatile memory)

Nonvolatile memory

Storage media

Agilent ESG, PSG, and E8663B (Only): NONVOLATILE

Agilent MXG1

1This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.
2The Agilent MXG uses an optional “USB media” to store non–volatile waveform data.

WAVEFORM

MXG (only) USB media:
File listing with extensions2
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 5

Creating and Downloading User–Data Files
Signal Generator Memory
memory allocated according to a Microsoft compatible file allocation table (FAT) file system. The
Agilent MXG signal generator allocates non–volatile memory in clusters according to the drive size
(see Table 3). For example, referring to Table 3, if the drive size is 15 MB and if the file is less than
or equal to 4k bytes, the file uses only one 4 KB cluster of memory. For files larger than 4 KB, and
with a drive size of 15 MB, the signal generator allocates additional memory in multiples of 4KB
clusters. For example, a file that has 21,538 bytes consumes 6 memory clusters (24,000 bytes).

On the Agilent MXG the non–volatile memory is also referred to as internal storage and USB media.
The Internal and USB media files /USERS/NONVOLATILE Directory contains file names with full
extensions (i.e. .marker, .header, etc.).

For more information on default cluster sizes for FAT file structures, refer to Table 3 and to
http://support.microsoft.com/.

Non–Volatile Memory (ESG, PSG, and E8663B)

The signal generator allocates non–volatile memory in blocks of 512 bytes. For files less than or equal
to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes, the signal
generator allocates additional memory in multiples of 512 byte blocks. For example, a file that has
21,538 bytes consumes 43 memory blocks (22,016 bytes).

Memory Size

For the E4438C, E8267D, and E8663B, the maximum volatile memory size for user data is less than
the maximum size for waveform files. This is because the signal generator permanently allocates a
portion of the volatile memory for waveform markers. The values in Table 4 is the total amount of
memory after deducting the waveform marker memory allocation.

The amount of available memory, volatile and non–volatile, varies by signal generator option and the
size of the other files that share the memory. The baseband generator (BBG) options contain the
volatile memory. Table 4 shows the maximum available memory assuming that there are no other
files residing in memory.

Table 3

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB – 15 MB 4K

16 MB – 127 MB 2K

128 MB – 255 MB 4K

256 MB – 511 MB 8K

512 MB – 1023 MB 16k

1024 MB – 2048 MB 32K

2048 MB – 4096 MB 64K

4096 MB – 8192 MB 128K

8192 MB – 16384 MB 256K
6 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Signal Generator Memory
Checking Available Memory

Whenever you download a user–data file, you must be aware of the amount of remaining signal
generator memory. Table 5 shows to where each user–data file type is downloaded and from which
memory type the signal generator accesses the file data. Information on downloading a user–data file
is located within each user–data file section.

NOTE The Bit, PRAM, and State user–data (file) types only apply to the E4438C with Option 001,
002, 601, or 602, and the E8267D with Option 601 or 602.

The FIR filter, (file) types only apply to the N5162A and N5182A with Option 651, 652, or
654, E4438C with Option 001, 002, 601, or 602, and the E8267D with Option 601 or 602.

Table 4 Maximum Signal Generator Memory

Volatile (WFM1/PRAM)
Memory

Non–Volatile (NVWFM) Memory

Option Size Option Size

N5162A and N5182A

651, 652, 6541
(BBG)

1.The internal baseband generator speed upgrade Options 670, 671, and 672 are option upgrades
that require Option 651 and 652 to have been loaded at the factory (refer to the Data Sheet for
more information). Any references to 651, 652, or 654 are inclusive of 671, 672, and 674.

40 MB Standard 4 GB2

2.For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value =
512 MB.

019 320 MB USB memory stick user determined

E4438C and E8267D

001, 601

(BBG)3

3. Options 001 and 002 apply to only the E4438C ESG.

32 MB Standard 512 MB

002 (BBG)3 128 MB 005 (Hard disk) 6 GB

602 (BBG) 256 MB - - - - - - - -
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 7

Creating and Downloading User–Data Files
Signal Generator Memory
Bit and binary files increase in size when the signal generator loads the data from non–volatile to
volatile memory. For more information, see “User File Size” on page 14.

Use the following SCPI commands to determine the amount of remaining memory:

Volatile Memory :MMEM:CAT? “WFM1”

The query returns the following information:

<memory used>,<memory remaining>,<“file_names”>

Non–Volatile Memory :MEM:CAT:ALL?

The query returns the following information:

<memory used>,<memory remaining>,<“file_names”>

NOTE The signal generator calculates the memory values based on the number of bytes used by the
files residing in volatile or non–volatile memory, and not on the memory block allocation. To
accurately determine the available memory, you must calculate the number of blocks of
memory used by the files. For more information on memory block allocation, see “Memory
Allocation” on page 5.

Table 5 User–Data File Memory Location

User–Data File
Type

Download
Memory

Access
Memory

Bit Non–volatile Volatile

Binary Non–volatile Volatile

PRAM Volatile Volatile

Instrument
State

Non–volatile Non–volatile

FIR Non–volatile Non–volatile

Flatness Non–volatile Non–volatile
8 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001, 002, 601, or 602, and the E8267D
with Option 601 or 602.

If you encounter problems with this section, refer to “Data Transfer Troubleshooting
(N5162A, N5182A, E4438C and E8267D Only)” on page 65.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI
command to upload files, the file’s upload should be verified using the *STB? command.
Refer to the SCPI Command Reference.

The signal generator accepts externally created and downloaded user file data for real–time
modulation formats that have user file as a data selection (shown as <“file_name”> in the data
selection SCPI command). When you select a user file, the signal generator incorporates the user file
data (payload data) into the modulation format’s data fields. You can create the data using programs
such as MATLAB or Mathcad. The following table shows the available real–time modulation formats
by signal generator model:

The signal generator uses two file types for downloaded user file data: bit and binary. With a bit file,
the signal generator views the data up to the number of bits specified when the file was downloaded.
For example, if you specify to use 153 bits from a 160 bit (20 bytes) file, the signal generator
transmits 153 bits and ignores the remaining 7 bits. This provides a flexible means in which to
control the number of transmitted data bits. It is the preferred file type and the easiest one to use.

With a binary file, the signal generator sees all bytes (bits) in a downloaded file and attempts to use
them. This can present challenges especially when working with framed data. In this situation, your
file needs to contain enough bits to fill a frame or timeslot, or multiple frames or timeslots, to end
on the desired boundary. To accomplish this, you may have to remove or add bytes. If there are not
enough bits remaining in the file to fill a frame or timeslot, the signal generator truncates the data
causing a discontinuity in the data pattern.

You download a user file to either the Bit or Binary memory catalog (directory). Unlike a PRAM file

E4438C ESG E2867D PSG

CDMA1

1. Requires Option 401.

TDMA2

2. Real–time TDMA modulation formats require Option 402 and include EDGE, GSM, NADC,
PDC, PHS, DECT, and TETRA.

Customc

Custom3

3. For ESG, requires Option 001, 002, 601, or 602, for PSG requires Option 601 or 602.

W–CDMA4

4. Requires Option 400.

GPS5

5. Requires Option 409.

- - -
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 9

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
(covered later in this chapter), user file data does not contain control bits, it is just data. The signal
generator adds control bits to the user file data when it generates the signal. There are two ways
that the signal generator uses the data, either in a continuous data pattern (unframed) or within
framed boundaries. Real–time Custom uses only unframed data, real–time TDMA modulation formats
use both types, and the others use only framed data.

NOTE For unframed data transmission, the signal generator requires a minimum of 60 symbols. For
more information, see “Determining Memory Usage for Custom and TDMA User File Data” on
page 15.

You create the user file to either fill a single timeslot/frame or multiple timeslots/frames. To create
multiple timeslots/frames, simply size the file with enough data to fill the number of desired
timeslots/frames.

User File Bit Order (LSB and MSB)

The signal generator views the data from the most significant bit (MSB) to the least significant bit
(LSB). When you create your user file data, it is important that you organize the data in this manner.
Within groups (strings) of bits, a bit’s value (significance) is determined by its location in the string.
The following shows an example of this order using two bytes.

Bit File Type Data

The bit file is the preferred file type and the easiest to use. When you download a bit file, you
designate how many bits in the file the signal generator can modulate onto the signal. During the file
download, the signal generator adds a 10–byte file header that contains the information on the
number of bits the signal generator is to use.

Although you download the data in bytes, when the signal generator uses the data, it recognizes only
the bits of interest that you designate in the SCPI command and ignores the remaining bits. This
provides greater flexibility in designing a data pattern without the concern of using an even number
of bytes as is needed with the binary file data format. The following figure illustrates this concept.
The example in the figure shows the bit data SCPI command formatted to download three bytes of
data, but only 23 bits of the three bytes are designated as the bits of interest. (For more information
on the bit data SCPI command format, see “Downloading User Files” on page 18 and “Command for
Bit File Downloads” on page 21.)

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at
the far left of the bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at
the far right of the bit string.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position
10 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
The following figure shows the same downloaded data from the above example as viewed in the
signal generator’s bit file editor (see the User’s Guide for more information) and with using an
external hex editor program.

In the bit editor, notice that the ignored bit of the bit–data is not displayed, however the hex value
still shows all three bytes. This is because bits 1 through 7 are part of the first byte, which is shown
as ASCII character x in the SCPI command line. The view from the hex editor program confirms that
the downloaded three bytes of data remains unchanged. To view a downloaded bit file with an
external hex editor program, FTP the file to your PC/UNIX workstation. For information on how to
FTP a file, see “FTP Procedures” on page 25.

Even though the signal generator views the downloaded data on a bit basis, it groups the data into
bytes, and when the designated number of bits is not a multiple of 8 bits, the last byte into one or

SCPI Command :MEM:DATA:BIT <"file_name">,<bit_interest>,<datablock>
:MEM:DATA:BIT "3byte",23, # 1 3 Z&x

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0Downloaded Data:

Byte 1 Byte 2 Byte 3

Bits of interest

Ignored bit (LSB)

5A 26 78Hex Value:

MSB

ASCII representation of the data (3 bytes)

Z & xASCII Representation:

Start block data number of bytes
number of decimal digits

Hex values

Bit data

Designated number of bits

3 bytes of data10 byte file header
(added by signal generator)

Designated number of bits (hex value = 23 decimal)
As Seen in a Hex Editor

:MEM:DATA:BIT "3byte",23,#13Z&xSCPI command to download the data

As Seen in the Signal Generator’s Bit File Editor
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 11

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
more 4–bit nibbles. To make the last nibble, the signal generator adds bits with a value of zero. The
signal generator does not show the added bits in the bit editor and ignores the added bits when it
modulates the data onto the signal, but these added bits do appear in the hex value displayed in the
bit file editor. The following example, which uses the same three bytes of data, further demonstrates
how the signal generator displays the data when only two bits of the last byte are part of the bits of
interest.

Notice that the bit file editor shows only two bytes and one nibble. In addition, the signal generator
shows the nibble as hex value 4 instead of 7 (78 is byte 3—ASCII character x in the SCPI command
line). This is because the signal generator sees bits 17 and 18, and assumes bits 19 and 20 are 00. As
viewed by the signal generator, this makes the nibble 0100. Even though the signal generator
extrapolates bits 19 and 20 to complete the nibble, it ignores these bits along with bits 21 through
24. As seen with the hex editor program, the signal generator does not actually change the three
bytes of data in the downloaded file.

For information on editing a file after downloading, see “Modifying User File Data” on page 24.

Hex value changes to 5A264

Designated bits

:MEM:DATA:BIT "3byte",18,#13Z&xSCPI command to download the data

As Seen in the Signal Generator’s Bit File Editor

3 bytes of data10 byte file header
(added by signal generator)

Designated number of bits (hex value = 18 decimal)As Seen in a Hex Editor

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0Downloaded Data:

Byte 1 Byte 2 Byte 3

LSB

Designated 18 bits

5A 26 78Hex Value:

MSB

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0

Byte 1 Byte 2 Nibble

Designated number of bits

5A 26 4

Added bits
as seen in
the hex value
12 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Binary File Type Data

With the Binary file type, the signal generator sees all of the bytes within the downloaded file and
attempts to use all of the data bits. When using this file type, the biggest challenge is creating the
data, so that the signal generator uses all of the bits (bytes) contained within the file. This is
referred to as using an even number of bytes. The method of creating the user file data pattern
depends on whether you are using unframed or framed data. The following two sections illustrate the
complexities of using the binary file format. You can eliminate these complexities by using the bit file
format (see “Bit File Type Data” on page 10).

Unframed Binary Data

When creating unframed data, you must think in terms of bits per symbol; so that your data pattern
begins and ends on the symbol boundary, with an even number of bytes. For example, to use 16QAM
modulation, the user file needs to contain 32 bytes:

• enough data to fill 16 states 4 times

• end on a symbol boundary

• create 64 symbols (the signal generator requires a minimum of 60 symbols for unframed data)

To do the same with 32QAM, requires a user file with 40 bytes.

When you do not use an even number of bytes, the signal generator repeats the data in the same
symbol where the data stream ends. This means that your data would not end on the symbol
boundary, but during a symbol. This makes it harder to identify the data content of a symbol. The
following figure illustrates the use of an uneven number of bytes and an even number of bytes.

16QAM 4 bits/symbol: 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

Symbol Symbol Symbol Symbol

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1

Symbol Symbol Symbol Symbol Symbol Symbol Symbol

Data repeats during a symbol

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

Symbol Symbol Symbol Symbol

Data repeats at the symbol boundary

Unframed Data

32QAM 5 bits/symbol:

Even Number of Bytes

Uneven Number of Bytes

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 Data pattern:

Data
repeats

Using an uneven number of bytes makes it harder to identify the data within a symbol.

MSB LSB
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 13

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Framed Binary Data

When using framed data, ensure that you use an even number of bytes and that the bytes contain
enough bits to fill the data fields within a timeslot or frame. When there are not enough bits to fill
a single timeslot or frame, the signal generator replicates the data pattern until it fills the
timeslot/frame.

The signal generator creates successive timeslots/frames when the user file contains more bits than
what it takes to fill a single timeslot or frame. When there are not enough bits to completely fill
successive timeslots or frames, the signal generator truncates the data at the bit location where there
is not enough bits remaining and repeats the data pattern. This results in a data pattern
discontinuity. For example, a frame structure that uses 348 data bits requires a minimum file size of
44 bytes (352 bits), but uses only 43.5 bytes (348 bits). In this situation, the signal generator
truncates the data from bit 3 to bit 0 (bits in the last byte). Remember that the signal generator
views the data from MSB to LSB. For this example to have an even number of bytes and enough bits
to fill the data fields, the file needs 87 bytes (696 bits). This is enough data to fill two frames while
maintaining the integrity of the data pattern, as illustrated in the following figure.

For information on editing a file after downloading, see “Modifying User File Data” on page 24.

User File Size

You download user files into non–volatile memory. For CDMA, GPS, and W–CDMA, the signal
generator accesses the data directly from non–volatile memory, so the file size up to the maximum
file size (shown in Table 6) for these formats is limited only by the amount of available non–volatile
memory. As seen in the table, the baseband generator option does not affect these file sizes.

For Custom and TDMA, however, when the signal generator creates the signal, it loads the data from
non–volatile memory into volatile memory, which is also the same memory that the signal generator
uses for Arb–based waveforms. For user data files, volatile memory is commonly referred to as
pattern ram memory (PRAM). Because the Custom and TDMA user files use volatile memory, their
maximum file size depends on the baseband generator (BBG) option and the amount of available

348 data bits CtrlCtrl

110100110110...01101111352 bits (44 bytes):

Truncated data (bits 0–3)
not enough bits remaining to fill the next frame

348 data bits CtrlCtrl348 data bits CtrlCtrl

011101100110110101110100110110...01101111696 bits (87 bytes):

348 data bits CtrlCtrl

Frame 1 Frame 2

Frame 1 data repeated

Frame 1 Frame 2

Even Number of Bytes

Uneven Number of Bytes
(some data truncated)

(all bits used)

Data fills both frames (348 bits per frame) with no truncated bits

Frame 1 data

Framed Data

MSB

LSB
14 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
PRAM. (Volatile memory resides on the BBG.) Table 6 shows the maximum file sizes by modulation
format and baseband generator option.

For more information on signal generator memory, see “Signal Generator Memory” on page 3. To
determine how much memory is remaining in non–volatile and volatile memory, see “Checking
Available Memory” on page 7.

Determining Memory Usage for Custom and TDMA User File Data

For Custom and TDMA user files, the signal generator uses both non–volatile and volatile
(PRAM/waveform) memory: you download the user file to non–volatile memory. To determine if there
is enough non–volatile memory, check the available non–volatile memory and compare it to the size
of the file to be downloaded.

After you select a user file and turn the format on, the signal generator loads the file into volatile
memory for processing:

• It translates each data bit into a 32–bit word (4 bytes).

The 32–bit words are not saved to the original file that resides in non–volatile memory.

• It creates an expanded data file named AUTOGEN_PRAM_1 in volatile memory while also
maintaining a copy of the original file in volatile memory. It is the AUTOGEN_PRAM_1 file that
contains the 32–bit words and accounts for most of the user file PRAM memory space.

• If the transmission is using unframed data and there are not enough bits in the data file to create
60 symbols, the signal generator replicates the data pattern until there is enough data for 60
symbols. For example, GSM uses 1 bit per symbol. If the user file contains only 24 bits, enough
for 24 symbols, the signal generator replicates the data pattern two more times to create a file
with 72 bits. The expanded AUTOGEN_PRAM_1 file size would show 288 bytes (72 bits × 4
bytes/bit).

Use the following procedures to calculate the required amount of volatile memory for both framed
and unframed TDMA signals:

• “Calculating Volatile Memory (PRAM) Usage for Unframed Data” on page 16.
• “Calculating Volatile Memory (PRAM) Usage for Framed Data” on page 16.

Table 6 Maximum User File Size

Modulation
Format

Baseband Generator Option

 001, 601 002 602

Custom1

TDMAa

1.File size with no other files residing in volatile memory.

800 kB 3.2 MB 6.4 MB

CDMA2

GPSb

W–CDMAb

2.File size is not affected by the BBG option.

10 kB 10 kB 10 kB
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 15

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Calculating Volatile Memory (PRAM) Usage for Unframed Data

Use this procedure to calculate the memory size for either a bit or binary file. To properly
demonstrate this process, the procedure employs a user file that contains 70 bytes (560 bits), with
the bit file using only 557 bits.

1. Determine the AUTOGEN_PRAM_1 file size:

The signal generator creates a 32–bit word for each user file bit (1 bit equals 4 bytes).

Binary file 4 bytes × (70 bytes x 8 bits) = 2240 bytes

Bit file 4 bytes × 557 bits= 2228 bytes

2. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:

Volatile memory allocates memory in blocks of 1024 bytes.

Binary file 2240 / 1024 = 2.188 blocks

Bit file 2228 / 1024 = 2.176 blocks

3. Round the memory block value to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use three blocks of memory for a total of 3072
bytes.

4. Determine the number of memory blocks that the copy of the original file occupies in volatile
memory.

For this example the bit and binary file sizes are shown in the following list:

• Binary file = 70 bytes < 1024 bytes = 1 memory block

• Bit file = 80 bytes < 1024 bytes = 1 memory block

Remember that a bit file includes a 10–byte file header.

5. Calculate the total volatile memory occupied by the user file data:

Calculating Volatile Memory (PRAM) Usage for Framed Data

Framed data is not a selection for Custom, but it is for TDMA formats. To frame data, the signal
generator adds framing overhead data such as tail bits, guard bits, and sync bits. These framing bits
are in addition to the user file data. For more information on framed data, see “Understanding
Framed Transmission For Real–Time TDMA” on page 27.

When using framed data, the signal generator views the data (framing and user file bits) in terms of
the number of bits per frame, even if only one timeslot within a frame is active. This means that the
signal generator creates a 32–bit word for each bit in a frame, for both active and inactive timeslots.

You can create a user file so that it fills a timeslot once or multiple times. When the user file fills a
timeslot multiple times, the signal generator creates the same number of frames as the number of
timeslots that the user file fills. For example, if a file contains enough data to fill a timeslot three
times, the signal produces three new frames before the frames repeat. Each new frame increases the

AUTOGEN_PRAM_1 Original File

3 blocks 1 block

1024 (3 + 1) = 4096 bytes
16 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
AUTOGEN_PRAM_1 file size. If you select different user files for the timeslots within a frame, the
user file that produces the largest number of frames determines the size of the AUTOGEN_PRAM_1
file.

Use this procedure to calculate the volatile memory usage for a GSM signal with two active timeslots
and two user binary files. One user file, 57 bytes, is for a normal timeslot and another, 37 bytes, is
for a custom timeslot.

1. Determine the total number of bits per timeslot.

A GSM timeslot consists of 156.25 bits (control and payload data).

2. Calculate the number of bits per frame.

A GSM frame consists of 8 timeslots: 8 × 156.25 = 1250 bits per frame.

3. Determine how many bytes it takes to produce one frame in the signal generator:

The signal generator creates a 32–bit word for each bit in the frame (1 bit equals 4 bytes).

4 x 1250 = 5000 bytes

Each GSM frame uses 5000 bytes of PRAM memory.

4. Analyze how many timeslots the user file data will fill.

A normal GSM timeslot (TS) uses 114 payload data bits, and a custom timeslot uses 148 payload
data bits. The user file (payload data) for the normal timeslot contains 57 bytes (456 bits) and the
user file for the custom timeslot contains 37 bytes (296 bits).

Normal TS 456 / 114 = 4 timeslots

Custom TS 296 / 148 = 2 timeslots

NOTE Because there is an even number of bytes, either a bit or binary file works in this scenario.
If there was an uneven number of bytes, a bit file would be the best choice to avoid data
discontinuity.

5. Compute the number of frames that the signal generator will generate.

There is enough user file data for four normal timeslots and two custom timeslots, so the signal
generator will generate four frames of data.

6. Calculate the AUTOGEN_PRAM_1 file size:

7. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:

Volatile memory allocates memory in blocks of 1024 bytes.

20000 / 1024 = 19.5 blocks

Number of Frames Bytes per Frame

4 5000

4 x 5000 = 20000 bytes
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 17

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
8. Round the memory block value up to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use 20 blocks of memory for a total of 20480
bytes.

9. Determine the number of memory blocks that the original files occupy in volatile memory.

The files do not share memory blocks, so you must determine how many memory blocks each file
occupies.

NOTE If the user file type is bit, remember to include the 10–byte file header in the file size.

10. Calculate the total volatile memory occupied by the AUTOGEN_PRAM_1 file and the user files:

Downloading User Files

The signal generator expects bit and binary file type data to be downloaded as block data (binary
data in bytes). The IEEE standard 488.2–1992 section 7.7.6 defines block data.

This section contains two examples to explain how to format the SCPI command for downloading
user file data. The examples use the binary user file SCPI command, however the concept is the same
for the bit file SCPI command:

• “Command Format” on page 18.
• “Command Format in a Program Routine” on page 19.

Command Format

This example conceptually describes how to format a data download command (#ABC represents the
block data):

:MEM:DATA <"file_name">,#ABC

<"file_name"> the data file path and name

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

Normal TS Custom TS

57 bytes = 1 block 37 bytes = 1 block

1 + 1 = 2 memory blocks

AUTOGEN_PRAM_1 User Files

20 blocks 2 blocks

1024 (20 + 2) = 22528 bytes
18 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
C the file data in bytes

bin: the location of the file within the signal generator file system

my_file the data file name as it will appear in the signal generator’s memory
catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes (1,920 bits) of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Format in a Program Routine” on page 19.

Some commands are file location specific and do not require the file location as part of the file
name. An example of this is the bit file SCPI command shown in “Command for Bit File Downloads”
on page 21.

Command Format in a Program Routine

This section demonstrates the use of the download SCPI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads user file data to the
signal generator’s Binary memory catalog (directory).

Line Code—Download User File Data

1
2
3
4
5
6
7
8
9

int bytesToSend;
bytesToSend = numsamples;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"BIN:FILE1\", #%d%d", strlen(s), bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, databuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

file_name A C

:MEM:DATA “bin:my_file”,#324012%S!4&07#8g*Y9@7...

Bfile location
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 19

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Line Code Description—Download User File Data

1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

2 Calculate the total number of bytes, and store the value in the integer variable defined in line 1.

3 Create a string large enough to hold the bytesToSend value as characters. In this code, string s
is set to 20 bytes (20 characters—one character equals one byte).

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”.

sprintf() is a standard function in C++, which writes string data to a string variable.

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

• strlen() is a standard function in C++, which returns length of a string.

• If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”BIN:FILE1\” #42000.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

• The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the user file data.
20 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Command for Bit File Downloads

Because the signal generator adds a 10–byte file header during a bit file download, you must use the
SCPI command shown in Table 7. If you FTP or copy the file for the initial download, the signal
generator does not add the 10–byte file header, and it does recognize the data in the file (no data in
the transmitted signal).

Bit files enable you to control how many bits in the file the signal generator modulates onto the
signal. Even with this file type, the signal generator requires that all data be contained within bytes.
For more information on bit files, see “Bit File Type Data” on page 10.

8 Send the user file data stored in the array (databuffer) to the signal generator.

• iwrite() sends the data specified in databuffer to the signal generator (session identifier
specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 2000.

• The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to
terminate the data download.

To verify the user file data download, see “Command for Bit File Downloads” on page 21 and
“Commands for Binary File Downloads” on page 22.

Table 7 Bit File Type SCPI Commands

Type Command Syntax

Command :MEM:DATA:BIT <"file_name">,<bit_count>,<block_data>

This downloads the file to the signal generator.

Line Code Description—Download User File Data
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 21

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Command Syntax Example

The following command downloads a file that contains 17 bytes:

:MEM:DATA:BIT "new_file",131,#21702%S!4&07#8g*Y9@7

Since this command is file specific (BIT), there is no need to add the file path to the file name.

After execution of this command, the signal generator creates a file in the bit directory (memory
catalog) named “new_file” that contains 27 bytes. Remember that the signal generator adds a
10–byte file header to a bit file. When the signal generator uses this file, it will recognize only
131 of the 136 bits (17 bytes) contained in the file.

For information on downloading block data, see “Downloading User Files” on page 18.

Commands for Binary File Downloads

To download a user file as a binary file type means that the signal generator, when the file is
selected for use, sees all of the data contained within the file. For more information on binary files,
see “Binary File Type Data” on page 13. There are two ways to download the file: to be able to
extract the file or not. Each method uses a different SCPI command, which is shown in Table 8.

Query :MEM:DATA:BIT? <"file_name">

Within the context of a program this query extracts the user file data. Executing the query
in a command window causes it to return the following information:
<bit_count>,<block_data>.

Query :MEM:CAT:BIT?

This lists all of the files in the bit file directory and shows the remaining non–volatile
memory:

<bytes used by bit files>,<available non-volatile memory>,<"file_names">

Table 8 Binary File Type Commands

Command
Type

Command Syntax

For
Extraction

SCPI :MEMory:DATA:UNPRotected "bin:file_name",<datablock>

This downloads the file to the signal generator. You can extract the file within the
context of a program.

FTP1 put <file_name> /user/bin/file_name

No
extraction

:MEM:DATA "bin:file_name",<block data>

This downloads the file to the signal generator. You cannot extract the file.

Table 7 Bit File Type SCPI Commands (Continued)

Type Command Syntax
22 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
File Name Syntax

There are three ways to format the file name, which must also include the file path:

• "BIN:file_name"
• "file_name@BIN"
• "/user/BIN/file_name"

Command Syntax Example

The following command downloads a file that contains 34 bytes:

:MEM:DATA "BIN:new_file",#2347^%S!4&07#8g*Y9@7.?:*Ru[+@y3#_^,>l

After execution of this command, the signal generator creates a file in the Binary (Bin) directory
(memory catalog) named “new_file” that contains 34 bytes.

For information on downloading block data, see “Downloading User Files” on page 18.

Selecting a Downloaded User File as the Data Source

This section describes how to format SCPI commands for selecting a user file using commands from
the GSM and Custom modulation formats. While the commands shown come from only two formats,
the concept remains the same when making the data selection for any of the other real–time
modulation formats that accept user data. To find the data selection commands for both framed and
unframed data for the different modulation formats, see the signal generator’s SCPI Command
Reference.

1. For TDMA formats, select either framed or unframed data:

:RADio:GSM:BURSt ON|OFF|1|0

ON(1) = framed OFF(0) = unframed

Query :MEM:DATA? "bin:file_name"

This returns information on the named file: <bit_count>,<block_data>.
Within the context of a program, this query extracts the user file, provided it was
download with the proper command.

Query :MEM:CAT:BIN?

This lists all of the files in the bit file directory and shows the remaining
non–volatile memory:

<bytes used by bit files>,<available non-volatile memory>,<"file_names">

1. See “FTP Procedures” on page 25.

Table 8 Binary File Type Commands (Continued)

Command
Type

Command Syntax
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 23

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
2. Select the user file:

3. Configure the remaining signal parameters.

4. Turn the modulation format on:

:RADio:CUSTom:STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

:FREQuency:FIXed 2.5GHZ

:POWer:LEVel -10.0DBM

:OUTPut:MODulation:STATe ON

:OUTPut:STATe ON

Modifying User File Data

There are two ways to modify a file after downloading it to the signal generator:

• Use the signal generator’s bit file editor. This works for both bit and binary files, but it converts
a binary file to a bit file and adds a 10–byte file header. For more information on using the bit
file editor, see the signal generator’s User’s Guide. You can also access the bit editor remotely
using the signal generator’s web server. For web server information, see the signal generator’s
Programming Guide.

• Use a hex editor program on your PC or UNIX workstation, as described below.

Modifying a Binary File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see “FTP Procedures” on page 25. Ensure that you use binary file
transfers during FTP operations.

2. Modify the file using a hex editor program.

3. FTP the file to the signal generator’s BIN memory catalog (directory).

Unframed Data

:RADio:CUSTom:DATA "BIT:file_name"

:RADio:CUSTom:DATA "BIN:file_name"

Framed Data

:RADio:GSM:SLOT0|1|2|3|4|5|6|7:NORMal:ENCRyption "BIT:file_name"

:RADio:GSM:SLOT0|1|2|3|4|5|6|7:NORMal:ENCRyption "BIN:file_name"
24 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Modifying a Bit File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see “FTP Procedures” on page 25. Ensure that you use binary file
transfers during FTP operations.

2. Modify the file using a hex editor program.

If you need to decrease or increase the number of bits of interest, change the file header hex
value.

3. FTP the file to the signal generator’s BIT memory catalog (directory).

FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has been
completed. These commands can potentially hang up due to the processing of other SCPI
parser operations. Refer to the SCPI Command Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP process, then
query the instrument by using SCPI commands such as: ':MEM:DATA:', ':MEM:CAT', '*STB?',
'FREQ?', '*IDN?', 'OUTP:STAT?'. Refer to the SCPI Command Reference.

80 Byte File From Signal Generator
02 80 hex = 640 bits designated as bits of interest

Modified File (80 Bytes to 88 Bytes)

02 bd hex = 701 bits designated as bits of interest

Added bytes
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 25

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
There are three ways to FTP a file:

• use Microsoft’s ® Internet Explorer FTP feature

• use the signal generator’s internal web server (ESG firmware ≥ C.03.76)
• use the PC or UNIX command window

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or <IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window.

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window.

For more information on the web server feature, see the Programming Guide.

Using the Command Window (PC or UNIX)
1. From the PC command prompt or UNIX command line, change to the proper directory:

• When downloading from the signal generator, the directory in which to place the file.
• When downloading to the signal generator, the directory that contains the file.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>.

Where instrument name is the signal generator’s hostname or IP address.

3. At the User: prompt, press Enter (no entry is required).

4. At the Password: prompt, press Enter (no entry is required).

 Microsoft is a U.S registered trademark of Microsoft Corporation.
26 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
5. At the ftp prompt, type the desired command:

• <file_name1> is the name of the file as it appears in the signal generator’s directory.
• <file_name> is the name of the file as it appears in the PC/UNIX current directory.
• <directory> is the signal generator’s BIT or BIN directory.

6. At the ftp prompt, type: bye.

7. At the command prompt, type: exit.

Understanding Framed Transmission For Real–Time TDMA

Specifying a user file as the data source for a framed transmission provides you with an easy method
to multiplex real data into internally generated TDMA framing. The user file fills the data fields of
the active timeslot in the first frame, and continue to fill the same timeslot of successive frames as
long as there is more data in the file with enough bits to fill the data field. This functionality enables
a communications system designer to download and modulate proprietary data sequences, specific PN
sequences, or simulate multiframe transmission such as those specified by some mobile
communications protocols. As the example in the following figure shows, a GSM multiframe
transmission requires 26 frames for speech.

To Get a File From the Signal Generator

get /user/<directory>/<file_name1> <file_name>

To Place a File in the Signal Generator

put <file_name> /user/<directory>/<file_name1>
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 27

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Figure 8-1 GSM Multiframe Transmission

When you select a user file as the data source for a framed transmission, the signal generator’s
firmware loads PRAM with the framing protocol of the active TDMA format. This creates a file named
AUTOGEN_PRAM_1 in addition to a copy of the user file. For all addresses corresponding to active
(on) timeslots, the signal generator sets the burst bit to 1 and fills the data fields with the user file
data. Other bits are set according to the configuration selected. For inactive (off) timeslots, the signal
generator sets the burst control bit to 0, with the data being unspecified.

In the last byte that contains the last user file data bit, the signal generator sets the Pattern Reset bit
to 1. This causes the user file data pattern to repeat in the next frame.

NOTE The data in PRAM is static. Firmware writes to PRAM once for the configuration selected
and the hardware reads this data repeatedly. Firmware overwrites the volatile PRAM
memory to reflect the desired configuration only when the data source or TDMA format
changes.

For example, transmitting a 228–bit user file for timeslot #1 (TS1) in a normal GSM transmission
creates two frames. Per the standard, a GSM normal channel is 156.25 bits long, with two 57–bit data
fields (114 user data bits total per timeslot), and 42 bits for control or signalling purposes.The user
file completely fills timeslot #1 for two consecutive frames, and then repeats. The seven remaining
timeslots in the GSM frame are off, as shown in Figure 8- 2.
28 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Figure 8-2 Mapping User File Data to a Single Timeslot

NOTE Compliant with the GSM standard, which specifies 156.25–bit timeslots, the signal generator
uses 156–bit timeslots and adds an extra guard bit to every fourth timeslot.

For this protocol configuration, the signal generator’s firmware loads PRAM with the bits defined in
the following table. (These bits are part of the 32–bit word per frame bit.) The Pattern Reset bit, bit
7, is 0 for frame one and 1 for the last byte of frame two.

Frame Timeslot PRAM Word
Offset

Data Bits Burst Bits Pattern Reset Bit

1 0 0 – 155 0/1 (don’t care) 0 (off) 0 (off)

1 1 (on) 156 – 311 set by GSM standard (42 bits) & first
114 bits of user file

1 (on) 0

1 2 312 – 467 0/1 (don’t care) 0 0

1 3 468 – 624 0/1 (don’t care) 0 0

1 4 625 – 780 0/1 (don’t care) 0 0

1 5 781 – 936 0/1 (don’t care) 0 0

1 6 937 – 1092 0/1 (don’t care) 0 0

1 7 1093 – 1249 0/1 (don’t care) 0 0

2 0 1250 – 1405 0/1 (don’t care) 0 0

2 1 (on) 1406 – 1561 set by GSM standard (42 bits) &
remaining bits of user file

1 (on) 0

2 2 through 6 1562 – 2342 0/1 (don’t care) 0 0 (off)

2 7 2343 – 2499 0/1 (don’t care) 0 1 (1 in offset
2499 only)
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 29

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the EVENT 1
output at either the beginning of the frame, beginning of a specific timeslot, or at all timeslots (SCPI
command, :RADio:GSM:SOUT FRAME|SLOT|ALL).

Because timeslots are configured and enabled within the signal generator, a user file can be
individually assigned to one or more timeslots. A timeslot cannot have more than one data source
(PN sequence or user file) specified for it. The amount of user file data that can be mapped into
hardware memory depends on both the amount of PRAM available on the baseband generator, and
the number and size of each frame. (See “Determining Memory Usage for Custom and TDMA User
File Data” on page 15.)

PRAM adds 31 bits to each bit in a frame, which forms 32–bit words.
The following shows how to calculate the amount of PRAM storage space required for a GSM
superframe:

NOTE For the total PRAM memory usage, be sure to add the number of PRAM blocks that the user
file occupies to the PRAM file size. For more information, see “Calculating Volatile Memory
(PRAM) Usage for Framed Data” on page 16.

Bits per superframe = normal GSM timeslot × timeslot per frame × speech multiframe(TCH) ×
superframe

size of normal GSM timeslot = 156.25
bits

timeslots per frame = 8 timeslots.

speech multiframe(TCH) = 26 frames superframe = 51 speech multiframes

1. Calculate the number of bits in the superframe:

 156.25 × 8 × 26 × 51 = 1,657,500 bits

2. Calculate the size of the PRAM file:

1,657,500 bits × 4 bytes (32–bit words) = 6,630,000 bytes

3. Calculate how much memory the PRAM file will occupy:

6,630,000 bytes / 1,024 bytes per PRAM block = 6,474.6 memory blocks

4. Round the quotient up to the next integer value:

6,475 blocks × 1,024 bytes per block = 6,630,400 bytes
30 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
Real–Time Custom High Data Rates

Custom has two modes for processing data, serial and parallel. When the data bit–rate exceeds
50 Mbps, the signal generator processes data in parallel mode, which means processing the data
symbol by symbol versus bit by bit (serial). This capability exists in only the Custom format when
using a continuous data stream. This means that it does not apply to a downloaded PRAM file type
(covered later in this chapter).

In parallel mode, for a 256QAM modulation scheme, Custom has the capability to reach a data rate
of up to 400 Mbps. The FIR filter width is what determines the data rate. The following table shows
the maximum data rate for each modulation type. Because the signal generator’s maximum symbol
rate is 50 Msps, a modulation scheme that has only 1 bit per symbol is always processed in serial
mode.

The only external effect of the parallel mode is in the EVENT 1 output signal. In serial and parallel
mode, the signal generator outputs a narrow pulse at the EVENT 1 connector. But in parallel mode,
the output pulse width increases by a factor of bits–per–symbol wide, as shown in the following
figure.

Modulation Type Bit Rate Range for Internal Data (bit rate = symbol rate × bits per symbol)

16 Symbol Wide FIR
Filter

32 Symbol Wide FIR
Filter

64 Symbol Wide FIR
Filter

BPSK, 2FSK, MSK 1bps–50Mbps 1bps–25 Mbps 1bps–12.5Mbps

C4FM, OQPSK,
4FSK

2bps–100Mbps 2bps–50Mbps 2bps–25Mbps

IS95 OQPSK,
QPSK

P4DQPSK,
IS95 QPSK

GRAYQPSK,
4QAM

D8PSK, EDGE,
8FSK, 8PSK

3bps–150Mbps 3bps–75Mbps 3bps–37.5Mbps

16FSK, 16PSK,
16QAM

4bps–200Mbps 4bps–100Mbps 4bps–50Mbps

Q32AM 5bps–250Mbps 5bps–125Mbps 5bps–62.5Mbps

64QAM 6bps–300Mbps 6bps–150Mbps 6bps–75Mbps

128QAM 7bps–350Mbps 7bps–175Mbps 7bps–87.5Mbps

256QAM 8bps–400Mbps 8bps–200Mbps 8bps–100Mbps
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 31

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)
20 ns

32QAM (5 bits per symbol)

100 ns

10 Msps
10.000001 Msps

bit rate = bits per symbol x symbol rate

NOTE: The pulse widths values are only for example purposes. The actual width may vary from the above values.
32 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001, 002, 601, or 602, and the E8267D
with Option 601 or 602.

If you encounter problems with this section, refer to “Data Transfer Troubleshooting
(N5162A, N5182A, E4438C and E8267D Only)” on page 65.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI
command to upload files, the file’s upload should be verified using the *STB? command.
Refer to the SCPI Command Reference.

This section contains information to help you transfer user–generated PRAM data from a system
controller to the signal generator’s PRAM. It explains how to download data directly into PRAM and
modulate the carrier signal with the data.

The control bits included in the PRAM file download, control the following signal functions:

• bursting
• timing signal at the EVENT 1 rear panel connector
• data pattern reset

PRAM data downloads apply to only real–time Custom and TDMA modulation formats. In the TDMA
formats, PRAM files are available only while using the unframed data selection. The following table
shows which signal generator models support these formats.

PRAM files differ from bit and binary user files.

Bit and binary user files (see “User File Data (Bit/Binary) Downloads (E4438C and E8267D)” on
page 9) download to non–volatile memory and the signal generator loads the user file data into
PRAM (volatile/waveform memory) for use. The signal generator adds the required control bits when
it generates the signal.

A PRAM file downloads directly into PRAM, and it includes seven of the required control bits for
each data (payload) bit. The signal generator adds the remaining control bits when it generates the
signal. You download the file using either a list or block data format. Programs such as MATLAB or
MathCad can generate the data.

E4438C ESG E2867D PSG

Custom1

1. For ESG, requires Option 001, 002, 601, or 602, for PSG requires Option 601 or 602.

TDMA2

2. Real–time TDMA modulation formats require Option 402 and include EDGE, GSM, NADC, PDC,
PHS, DECT, and TETRA.

Customa
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 33

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
This type of signal control enables you to design experimental or proprietary framing schemes.

After selecting the PRAM file, the signal generator builds the modulation scheme by reading data
stored in PRAM, and constructing framing protocols according to the PRAM file data and the
modulation format. You can manipulate PRAM data by changing the standard protocols for a
modulation format such as the symbol rate, modulation type, and filter either through the front panel
interface or with SCPI commands.

Understanding PRAM Files

The term PRAM file comes from earlier Agilent products, the E443xB ESGs. PRAM is another term
for waveform memory (WFM1), which is also known as volatile memory. This means that PRAM files
and waveform files occupy the same memory location. The signal generator’s volatile memory
(waveform memory) storage path is /user/BBG1/waveform. For more information on memory, see
“Signal Generator Memory” on page 3.

 The following figure shows a PRAM byte and illustrates the difference between it and a bit/binary
user file byte. Notice the control bits in the PRAM byte.

Only three of the seven control bits elicit a response from the signal generator. The other four bits
are reserved. Table 9 describes the bits for a PRAM byte.

User File Data Byte:

MSB

Payload Bits

PRAM File Data Byte: 1 1 0 1 0 1 0 1

Control bits Payload bit

LSB

1 0 0 1 1 1 0 1

MSB LSB
34 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
As seen in Table 9, only four bits, shown in the following list, can change state:

• bit 0—data
• bit 2—bursting
• bit 6—EVENT 1 rear panel output
• bit 7—pattern reset

Because a PRAM byte has only four bits that can change states, there are only 15 possible byte
patterns as shown in Table 10. The table also shows the decimal value for each pattern, which is
needed for downloading data using the list format shown on “SCPI Command for a List Format
Download” on page 39.

Table 9 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non–bursted, non–TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1
Output

0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit
to 1. Use this output for functions such as a triggering external hardware to indicate when
the data pattern begins and restarts, or creating a data–synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 35

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Table 10 PRAM Byte Patterns and Bit Positions

Bit Function

P
at

te
rn

 R
es

et

E
V

E
N

T
 1

 O
u

tp
u

t

R
es

er
ve

d
 (

B
it

 =
 0

)

R
es

er
ve

d
 (

B
it

 =
 1

)

R
es

er
ve

d
 (

B
it

 =
 0

)

B
ur

st

R
es

er
ve

d
 (

B
it

 =
 0

)

D
at

a

Bit
Pattern
Decimal

Value

Bit Position 7 6 5 4 3 2 1 0 - - -

Bit Pattern 1 1 0 1 0 1 0 1 213

1 1 0 1 0 1 0 0 212

1 1 0 1 0 0 0 1 209

1 1 0 1 0 0 0 0 208

1 0 0 1 0 1 0 1 149

1 0 0 1 0 0 0 1 145

1 0 0 1 0 0 0 0 144

0 1 0 1 0 1 0 1 85

0 1 0 1 0 1 0 0 84

0 1 0 1 0 0 0 1 81

0 1 0 1 0 0 0 0 80

0 0 0 1 0 1 0 1 21

0 0 0 1 0 1 0 0 20

0 0 0 1 0 0 0 1 17

0 0 0 1 0 0 0 0 16
36 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope.
There is approximately a 12–symbol delay between a state change in the burst bit and the
corresponding effect at the RF out. This delay varies with symbol rate and filter settings, and
requires compensation to advance the burst bit in the downloaded PRAM file.

PRAM File Size

Because volatile memory resides on the baseband generator (BBG), the maximum PRAM file size
depends on the installed baseband generator option, as shown in Table 11.

The maximum PRAM user file size in the table above refers to the maximum number of payload bits.
After downloading, the signal generator translates each downloaded payload bit into a 32–bit word:

• 1 downloaded payload bit

• 7 downloaded control bits as shown in Table 9 on page 35

• 24 bits added by the signal generator

The following table shows the maximum file size after the signal generator has translated the
maximum number of payload bits into 32–bit words.

To properly size a PRAM file, you must determine the file size after the 32–bit translation process.
The signal generator measures a PRAM file size in units of bytes; each 32–bit word equals 4 bytes.

Determining the File Size

The following example shows how to calculate a downloaded file size using a PRAM file that contains
89 bytes (payload bits plus 7 control bits per payload bit):

89 bytes + [(89 × 24 bits) / 8] = 356 bytes

Table 11 Maximum PRAM User File Size (Payload Bits Only)

Modulation
Format

Baseband Generator Option

 001, 601 002 602

Custom
TDMA 8 Mbits1

1. File size with no other files residing in volatile memory.

32 Mbitsa 64 Mbitsa

Table 12 Maximum File Size After Downloading

Modulation
Format

Baseband Generator Option

 001, 601 002 602

Custom
TDMA 32 MBytes1

1. File size with no other files residing in volatile memory.

128 MBytesa 256 MBytesa
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 37

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Because the file downloads one fourth of the translated 32–bit word, another method to calculate the
file size is to multiply the downloaded file size by four:

89 bytes × 4 = 356 bytes

See also “Signal Generator Memory” on page 3 and “Checking Available Memory” on page 7.

Minimum File Size

A PRAM file requires a minimum of 60 bytes to create a signal. If the downloaded file contains less
than 60 bytes, the signal generator replicates the file until the file size meets the 60 byte minimum.
This replication process occurs after you select the file and turn the modulation format on. The
following example shows this process using a downloaded 14–byte file:

• During the file download, the 14 bytes are translated into 56 bytes (fourteen 32–bit words).

14 bytes × 4 = 56 bytes

• After selecting and turning the format on, the signal generator replicates the file contents to
create the 60 byte minimum file size.

60 bytes / 14 bytes = 4.29 file replications

The signal generator rounds this real value up to the next highest integer. In this example, the
signal generator replicates the fourteen 32–bit words (56 bytes) by a factor of 5, which makes the
final file size 280 bytes. This equates to a 70 byte file.

14 bytes × 5 = 70 bytes

70 + [(70 × 24) / 8] = 280 bytes

Or

56 bytes × 5 = 280 bytes

File size increases
by a factor of 4

File size increases
by a factor of 5
38 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
SCPI Command for a List Format Download

Using the list format, enter the data in the command line using comma separated decimal values.
This file type takes longer to download because the signal generator must parse the data. When
creating the data, remember that the signal generator requires a minimum of 60 bytes. For more
information on file size limits, see “PRAM File Size” on page 37.

Command Syntax

:MEMory:DATA:PRAM:FILE:LIST <"file_name">,<uint8>[,<uint8>,<...>]

uint8 The decimal equivalent of an unsigned 8–bit integer value. For a list of usable
decimal values and their meaning with respect to the generated signal, see Table
10 on page 36.

Command Syntax Example

The following example, when executed, creates a new file in volatile (waveform) memory with the
following attributes:

• creates a file named new_file
• outputs a single pulse at the EVENT 1 connector
• bursts the data pattern 1100 seven times over 28 bytes
• transmits 32 nonbursted bytes
• resets the data pattern so it starts again

:MEMory:DATA:PRAM:FILE:LIST <"new_file">,85,21,20,20,21,21,20,20,21,21,20,20,21,21,
20,20,21,21,20,20,21,21,20,20,21,21,20,20,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,144

The following list defines the meaning of the different bytes seen in the command line:

SCPI Command for a Block Data Download

The IEEE standard 488.2–1992 section 7.7.6 defines block data. The signal generator is able to
download block data significantly faster than list formatted data (see SCPI Command for a List
Format Download), because it does not have to parse the data. When creating the data, remember
that the signal generator requires a minimum of 60 bytes. For more information on file size limits,
see “PRAM File Size” on page 37.

Command Syntax

:MEMory:DATA:PRAM:FILE:BLOCk <"file_name">,<blockdata>

85 Send a pulse to the EVENT 1 output, and burst the signal with a data bit of 1.

21 Burst the signal with a data bit of 1.

20 Burst the signal with a data bit of 0.

16 Do not burst the signal (RF output off), and set the data bit to 0.

144 Reset the data pattern, do not burst the signal (RF output off), and set the data bit to 0.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 39

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
The following sections explain how to format the SCPI command for downloading block data:

• “Command Syntax Example” on page 40.

• “Command Syntax in a Program Routine” on page 40.

Command Syntax Example

This example conceptually describes how to format a block data download command (#ABC represents
the block data):

:MEMory:DATA:PRAM:FILE:BLOCk <"file_name">,#ABC

<"file_name"> the file name as it will appear in the signal generator

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

C the PRAM file data in bytes

my_file the PRAM file name as it will appear in the signal generator’s WFM1
memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size, and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Syntax in a Program Routine” on page 40.

Command Syntax in a Program Routine

This section demonstrates the use of the download SPCI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads a 240 byte PRAM file
to the signal generator’s WFM1 (waveform) memory catalog. This program assumes that there is a
char array, databuffer, that contains the 240 bytes of PRAM data and that the variable numbytes
stores the length of the array.

file_name A C

:MEMory:DATA:PRAM:FILE:BLOCk “my_file”,#324012%S!4&07#8g*Y9@7...

B

40 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Line Code—Download PRAM File Data

1
2
3
4
5
6
7
8
9

int bytesToSend;
bytesToSend = numbytes;
char s[4];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA:PRAM:FILE:BLOCk \"FILE1\", #%d%d", strlen(s),bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, databuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download PRAM File Data

1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

2 Store the total number of PRAM bytes in the integer variable defined in line 1. numbytes
contains the length of the databuffer array referenced in line 8.

3 Create a string large enough to hold the bytesToSend value as characters plus a null character
value. In this code, string s is set to 4 bytes (3 characters for the bytesToSend value and one
null character—one character equals one byte).

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For this example, bytesToSend = 240; s = ”240”.

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

• sprintf() is a standard function in C++, which writes string data to a string variable.

• strlen() is a standard function in C++, which returns length of a string.

• bytesToSend = 240, then s = “240” plus the null character, strlen(s) = 4, so
cmd = :MEM:DATA:PRAM:FILE:BLOCk ”FILE1\” #3240.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

• The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the PRAM file data.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 41

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Selecting a Downloaded PRAM File as the Data Source

The following steps show the process for selecting a PRAM file using commands from the GSM
(TDMA) modulation format. While the commands shown come from only one format, the concept
remains the same when making the data selection for any of the other real–time modulation formats
that support PRAM data. To find the commands for Custom and the other TDMA formats, see the
signal generator’s SCPI Command Reference.

1. For real–time TDMA formats, select unframed data:

:RADio:GSM:BURSt:STATe OFF

2. Select the data type:

:RADio:GSM:DATA PRAM

3. Select the PRAM file:

:RADio:GSM:DATA:PRAM <"file_name">

Because the command is file specific (PRAM), there is no need to include the file path with the
file name.

4. Configure the remaining signal parameters.

8 Send the PRAM file data stored in the array, databuffer, to the signal generator.

• iwrite() sends the data specified in databuffer (PRAM data) to the signal generator (session
identifier specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 240.

• The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to
terminate the data download.

Line Code Description—Download PRAM File Data
42 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
5. Turn the modulation format on:

:RADio:GSM:STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

:FREQuency:FIXed 1.8GHZ

:POWer:LEVel -10.0DBM

:OUTPut:MODulation:STATe ON

:OUTPut:STATe ON

Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory

After you download the file to volatile memory (waveform memory), you can then save it to
non–volatile memory. Remember that a PRAM file downloads to waveform memory. Conversely, when
you store a PRAM file to non–volatile memory, it uses the same directory as waveform files. When
storing or restoring a file, you must include the file path as part of the file_name variable.

Command Syntax

The first file_name variable is the current location of the file and its name; the second file_name
variable is the destination to store the file and its name.

There are three ways to format the file_name variable to include the file path:

Extracting a PRAM File

When you extract a PRAM file, you are extracting the translated 32–bit word–per–byte file. You
cannot extract just the downloaded data. Extracting a PRAM file is similar to extracting a waveform
file in that you use the same commands, and the PRAM file resides in either volatile memory
(waveform memory) or the waveform directory for non–volatile memory. After extraction, you can
download the file to the same signal generator or to another signal generator with the proper option
configuration that supports the downloaded file. There are two ways to download a file after
extraction:

Volatile Memory to Non–Volatile Memory

:MEMory:COPY "WFM1:file_name","NVWFM:file_name"
:MEMory:COPY "file_name@WFM1","file_name@NVWFM"
:MEMory:COPY "/user/bbg1/waveform/file_name","/user/waveform/file_name"

Non–Volatile Memory to Volatile Memory

:MEMory:COPY "NVWFM:file_name","WFM1:file_name"
:MEMory:COPY "file_name@NVWFM","file_name@WFM1"
:MEMory:COPY "/user/waveform/file_name","/user/bbg1/waveform/file_name"
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 43

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
• with the ability to extract later
• with no extraction capability

CAUTION Ensure that you do not use the :MEMory:DATA:PRAM:FILE:BLOCk command to download
an extracted file. If you use this command, the signal generator will treat the file as a
new PRAM file and translate the LSB of each byte into a 32–bit word, corrupting the file
data.

Command Syntax

This section lists the commands for extracting PRAM files and downloading extracted PRAM files. To
download an extracted file, you must use block data. For information on block data, see “SCPI
Command for a Block Data Download” on page 39. In addition, there are three ways to format the
file_name variable, which must also include the file path, as shown in the following tables.

There are two commands for file extraction:

• :MEM:DATA? <"file_name">
• :MMEM:DATA? <"filename">

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 13 Extracting a PRAM File

Extraction
Method/Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA? "WFM1:file_name"
:MEM:DATA? "file_name@WFM1"
:MEM:DATA? "/user/bbg1/waveform/file_name"

SCPI/non–volatile
memory

:MEM:DATA? "NVWFM:file_name"
:MEM:DATA? "file_name@NVWFM"
:MEM:DATA? "/user/waveform/file_name"

FTP/volatile memory1

1. See “FTP Procedures” on page 25.

get /user/bbg1/waveform/file_name

FTP/non–volatile

memorya
get /user/waveform/file_name
44 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
There are two commands that download a file for no extraction:

• :MEM:DATA <"file_name">,<blockdata>
• :MMEM:DATA <"filename">,<blockdata>

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 14 Downloading a File for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
:MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
:MEM:DATA:UNPRotected "/user/bbg1/waveform/file_name",<blockdata>

SCPI/non–volatile
memory

:MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
:MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
:MEM:DATA:UNPRotected "/user/waveform/file_name",<blockdata>

FTP/volatile memory1

1. See “FTP Procedures” on page 25.

put <file_name> /user/bbg1/waveform/file_name

FTP/non–volatile

memorya
put <file_name> /user/waveform/file_name

Table 15 Downloading a File for No Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA "WFM1:file_name",<blockdata>
:MEM:DATA "file_name@WFM1",<blockdata>
:MMEM:DATA "user/bbg1/waveform/file_name",<blockdata>

SCPI/non–volatile
memory

:MEM:DATA "NVWFM:file_name",<blockdata>
:MEM:DATA "file_name@NVWFM",<blockdata>
:MEM:DATA /user/waveform/file_name",<blockdata>
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 45

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
Modifying PRAM Files

The only way to change PRAM file data is to modify the original file on a computer and download it
again. The signal generator does not support viewing and editing PRAM file contents. Because the
signal generator translates the data bit into a 32–bit word, the file contents are not recognizable, and
therefore not editable using a hex editor program, as shown in the following figure.

60 byte PRAM file prior to downloading

60 byte PRAM file after downloading
46 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

NOTE If you encounter problems with this section, refer to “Data Transfer Troubleshooting
(N5162A, N5182A, E4438C and E8267D Only)” on page 65.

The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After
downloading the coefficients, these user–defined FIR filter coefficient values can be selected as the
filtering mechanism for the active digital communications standard.

Data Requirements

There are two requirements for user–defined FIR filter coefficient files:

1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point numbers.

2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s firmware. See “Sample
Command Line” on page 48.

Data Limitations

Filter lengths of up to 1024 taps (coefficients) are allowed. The oversample ratio (OSR) is the number
of filter taps per symbol. Oversample ratios from 1 through 32 are possible.

The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of 32.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps, 64 symbols and a 16–times
oversample ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symbols.

The sampling period (Δt) is equal to the inverse of the sampling rate (FS). The sampling rate is equal
to the symbol rate multiplied by the oversample ratio. For example, the GSM symbol rate is
270.83 ksps. With an oversample ratio of 4, the sampling rate is 1083.32 kHz and Δt (inverse of FS)
is 923.088 nsec.

Downloading FIR Filter Coefficient Data

The signal generator stores the FIR files in the FIR (/USER/FIR) directory, which utilizes non–volatile
memory (see also “Signal Generator Memory” on page 3). Use the following SCPI command line to
download FIR filter coefficients (file) from the PC to the signal generator’s FIR directory:

:MEMory:DATA:FIR <"file_name">,osr,coefficient{,coefficient}

Use the following SCPI command line to query list data from the FIR file:

:MEMory:DATA:FIR? <"file_name">
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 47

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)
Sample Command Line

The following SCPI command will download a typical set of FIR filter coefficient values and name the
file “FIR1”:

:MEMory:DATA:FIR "FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient
values (the file is then represented with this name in the FIR File catalog)

4 specifies the oversample ratio

0,0,0,0,0,
0.000001,... the FIR filter coefficients

Selecting a Downloaded User FIR Filter as the Active Filter

NOTE For information on manual key presses for the following remote procedures, refer to the
User’s Guide.

FIR Filter Data for TDMA Format

The following remote command selects user FIR filter data as the active filter for a TDMA modulation
format.

:RADio:<desired format>:FILTer <"file_name">

This command selects the user FIR filter, specified by the file name, as the active filter for the TDMA
modulation format. After selecting the file, activate the TDMA format with the following command:

:RADio:<desired format>:STATe On

FIR Filter Data for Custom Modulation

The following remote command selects user FIR filter data as the active filter for a custom
modulation format.

:RADio:CUSTom:FILTer <"file_name">

This command selects the user FIR filter, specified by the file name, as the active filter for the
custom modulation format. After selecting the file, activate the TDMA format with the following
command:

:RADio:CUSTom:STATe On

FIR Filter Data for CDMA and W–CDMA Modulation

The following remote command selects user FIR filter data as the active filter for a CDMA modulation
format. The process is very similar for W–CDMA.

:RADio:<desired format>:ARB:FILTer <"file_name">
48 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)
This command selects the User FIR filter, specified by the file name, as the active filter for the CDMA
or W–CDMA modulation format. After selecting the file, activate the CDMA or W–CDMA format with
the following command:

:RADio:<desired format>:ARB:STATe On

Modulating and Activating the Carrier

The following commands set the carrier frequency and power, and turns on the modulation and the
RF output.

1. Set the carrier frequency to 2.5 GHz:

:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to –10.0 dBm:

:POWer:LEVel -10.0DBM

3. Activate the modulation:

:OUTPut:MODulation:STATe ON

4. Activate the RF output:

:OUTPut:STATe ON
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 49

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
Save and Recall Instrument State Files

NOTE References to waveform files and some of the other data file types mentioned in the
following sections are not available for all models and options of signal generator. Refer to
the instrument’s Data Sheet for the signal generator and options being used.

The signal generator can save instrument state settings to memory. An instrument state setting
includes any instrument state that does not survive a signal generator preset or power cycle such as
frequency, amplitude, attenuation, and other user–defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10 sequences with 100
registers per sequence available for instrument state settings. These instrument state files are stored
in the USER/STATE directory. See also, “Signal Generator Memory” on page 3.

The save function does not store data such as Arb waveforms, table entries, list sweep data, and so
forth. The save function saves a reference to the waveform or data file name associated with the
instrument state. Use the store commands or store softkey functions to store these data file types to
the signal generator’s memory catalog.

Before saving an instrument state that has a data file or waveform file associated with it, store the
file. For example, if you are editing a multitone arb format, store the multitone data to a file in the
signal generator’s memory catalog (multitone files are stored in the USER/MTONE directory). Then
save the instrument state associated with that data file. The settings for the signal generator such as
frequency and amplitude and a reference to the multitone file name will be saved in the selected
sequence and register number. Refer to the signal generator’s User’s Guide, Key and Data Field
Reference, or the signal generator’s Help hardkey for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the *SAV command, in
register 01, sequence 1. A comment is then added to the instrument state.

*SAV 01,1
:MEM:STAT:COMM 01,1,"Instrument state comment"

If there is a waveform or data file associated with the instrument state, there will be a file name
reference saved along with the instrument state. However, the waveform/data file must be stored in
the signal generator’s memory catalog as the *SAV command does not save data files. For more
information on storing file data such as modulation formats, arb setups, and table entries refer to the
signal generator’s User’s Guide.

NOTE On the N5162A, N5182A, E4438C, and E8267D, if a saved instrument state contains a
reference to a waveform file, ensure that the waveform file resides in volatile memory before
recalling the instrument state. For more information, see the User’s Guide.
50 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
The recall function recalls a saved instrument state. If there is a data file associated with the
instrument state, the file will be loaded along with the instrument state. The following command
recalls the instrument state saved in register 01, sequence 1.

*RCL 01,1

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program
prompts the user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer
in the same directory where the State_Files.exe program is located. The Restore State Files selection
downloads instrument state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console interface and the results
obtained after selecting the Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on
Agilent’s website: http:\\www.agilent.com for more information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is available on the CD–ROM in
the programming examples section under the same name.

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are
three components of the .NET Framework: the common language runtime, class libraries, and Active
Server Pages, called ASP.NET. Refer to the Microsoft website for more information on the .NET
Framework.

The .NET Framework must be installed on your computer before you can run the State_Files
program. The framework can be downloaded from the Microsoft website and then installed on your
computer.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 51

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD–ROM programming examples section to the directory
where the .NET Framework is installed.

2. Change the TCPIP0 address in the program from TCPIP0::000.000.000.000 to your signal
generator’s address.

3. Save the file using the .cs file name extension.

4. Run the Command Prompt program. Start > Run > "cmd.exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

5. Type csc.exe State_Files.cs at the command prompt and then press the Enter key on the keyboard
to run the program. The following figure shows the command prompt interface.

The State_Files.cs program is listed below. You can copy this program from the examples directory on
the signal generator’s CD–ROM.

NOTE The State_Files.cs example uses the ESG in the programming code but can be used with the
PSG or Agilent MXG.

//**

// FileName: State_Files.cs

//

// This C# example code saves and recalls signal generator instrument states. The saved

// instrument state files are written to the local computer directory computer where the

// State_Files.exe is located. This is a console application that uses DLL importing to

// allow for calls to the unmanaged Agilent IO Library VISA DLL.

//
52 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
// The Agilent VISA library must be installed on your computer for this example to run.

// Important: Replace the visaOpenString with the IP address for your signal generator.

//

//**

using System;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

using System.Collections;

using System.Text.RegularExpressions;

namespace State_Files

{

 class MainApp

 {

 // Replace the visaOpenString variable with your instrument's address.

 static public string visaOpenString = "TCPIP0::000.000.000.000"; //"GPIB0::19";

 //"TCPIP0::ESG3::INSTR";

public const uint DEFAULT_TIMEOUT = 30 * 1000;// Instrument timeout 30 seconds.

public const int MAX_READ_DEVICE_STRING = 1024; // Buffer for string data reads.

public const int TRANSFER_BLOCK_SIZE = 4096;// Buffer for byte data.

 // The main entry point for the application.

 [STAThread]

static void Main(string[] args)

 {

 uint defaultRM;// Open the default VISA resource manager

if (VisaInterop.OpenDefaultRM(out defaultRM) == 0) // If no errors, proceed.

{

uint device;

// Open the specified VISA device: the signal generator

if (VisaInterop.Open(defaultRM, visaOpenString,VisaAccessMode.NoLock,

DEFAULT_TIMEOUT, out device) == 0)

// if no errors proceed.

{

Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 53

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
bool quit = false;

while (!quit)// Get user input
{

Console.Write("1) Backup state files\n" +

"2) Restore state files\n" +

"3) Quit\nEnter 1,2,or 3. Your choice: ");

string choice = Console.ReadLine();
switch (choice)

{

case "1":
{

BackupInstrumentState(device); // Write instrument state
break; // files to the computer

}

 case "2":

{

RestoreInstrumentState(device); // Read instrument state

break;// files to the sig gen

}

case "3":

{

quit = true;

break;

}

default:

{

break;

}

}

}

VisaInterop.Close(device);// Close the device

}

else

{

Console.WriteLine("Unable to open " + visaOpenString);

 }

VisaInterop.Close(defaultRM); // Close the default resource manager

 }

else

{

 Console.WriteLine("Unable to open the VISA resource manager");

 }

 }

 /* This method restores all the sequence/register state files located in
54 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
the local directory (identified by a ".STA" file name extension)

to the signal generator.*/

static public void RestoreInstrumentState(uint device)

{

DirectoryInfo di = new DirectoryInfo(".");// Instantiate object class

FileInfo[] rgFiles = di.GetFiles("*.STA"); // Get the state files

foreach(FileInfo fi in rgFiles)

{

Match m = Regex.Match(fi.Name, @"^(\d)_(\d\d)");

if (m.Success)

{

string sequence = m.Groups[1].ToString();

string register = m.Groups[2].ToString();

Console.WriteLine("Restoring sequence #" + sequence +

 ", register #" + register);

/* Save the target instrument's current state to the specified sequence/

register pair. This ensures the index file has an entry for the specified

sequence/register pair. This workaround will not be necessary in future

revisions of firmware.*/

WriteDevice(device,"*SAV " + register + ", " + sequence + "\n",

 true); // << on SAME line!

// Overwrite the newly created state file with the state

// file that is being restored.

WriteDevice(device, "MEM:DATA \"/USER/STATE/" + m.ToString() + "\",",

 false); // << on SAME line!

WriteFileBlock(device, fi.Name);

WriteDevice(device, "\n", true);

}

}

 }

/* This method reads out all the sequence/register state files from the signal

generator and stores them in your computer's local directory with a ".STA"

extension */

static public void BackupInstrumentState(uint device)

{

// Get the memory catalog for the state directory

WriteDevice(device, "MEM:CAT:STAT?\n", false);
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 55

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
string catalog = ReadDevice(device);

/* Match the catalog listing for state files which are named

(sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/

Match m = Regex.Match(catalog, "\"(\\d_\\d\\d),");

while (m.Success)

{

// Grab the matched filename from the regular expresssion

string nextFile = m.Groups[1].ToString();

// Retrieve the file and store with a .STA extension

// in the current directory

Console.WriteLine("Retrieving state file: " + nextFile);

WriteDevice(device, "MEM:DATA? \"/USER/STATE/" + nextFile + "\"\n", true);

ReadFileBlock(device, nextFile + ".STA");

// Clear newline

ReadDevice(device);

// Advance to next match in catalog string

m = m.NextMatch();

}

}

/* This method writes an ASCII text string (SCPI command) to the signal generator.

If the bool "sendEnd" is true, the END line character will be sent at the

conclusion of the write. If "sendEnd is false the END line will not be sent.*/

static public void WriteDevice(uint device, string scpiCmd, bool sendEnd)

{

byte[] buf = Encoding.ASCII.GetBytes(scpiCmd);

if (!sendEnd) // Do not send the END line character

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);

}

uint retCount;

VisaInterop.Write(device, buf, (uint)buf.Length, out retCount);

if (!sendEnd) // Set the bool sendEnd true.

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);

}

}

// This method reads an ASCII string from the specified device

static public string ReadDevice(uint device)

{

56 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
string retValue = "";

byte[] buf = new byte[MAX_READ_DEVICE_STRING]; // 1024 bytes maximum read

uint retCount;

if (VisaInterop.Read(device, buf, (uint)buf.Length -1, out retCount) == 0)

{

retValue = Encoding.ASCII.GetString(buf, 0, (int)retCount);

}

return retValue;

}

/* The following method reads a SCPI definite block from the signal generator

and writes the contents to a file on your computer. The trailing

newline character is NOT consumed by the read.*/

static public void ReadFileBlock(uint device, string fileName)

{

// Create the new, empty data file.

FileStream fs = new FileStream(fileName, FileMode.Create);

// Read the definite block header: #{lengthDataLength}{dataLength}

uint retCount = 0;

byte[] buf = new byte[10];

VisaInterop.Read(device, buf, 2, out retCount);

VisaInterop.Read(device, buf, (uint)(buf[1]-'0'), out retCount);

uint fileSize = UInt32.Parse(Encoding.ASCII.GetString(buf, 0, (int)retCount));

// Read the file block from the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

uint bytesRemaining = fileSize;

while (bytesRemaining != 0)

{

uint bytesToRead = (bytesRemaining < TRANSFER_BLOCK_SIZE) ?

bytesRemaining : TRANSFER_BLOCK_SIZE;

VisaInterop.Read(device, readBuf, bytesToRead, out retCount);

fs.Write(readBuf, 0, (int)retCount);

bytesRemaining -= retCount;

}

// Done with file

fs.Close();

}

/* The following method writes the contents of the specified file to the

specified file in the form of a SCPI definite block. A newline is
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 57

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
NOT appended to the block and END is not sent at the conclusion of the

write.*/

static public void WriteFileBlock(uint device, string fileName)

{

// Make sure that the file exists, otherwise sends a null block

if (File.Exists(fileName))

{

FileStream fs = new FileStream(fileName, FileMode.Open);

// Send the definite block header: #{lengthDataLength}{dataLength}

string fileSize = fs.Length.ToString();

string fileSizeLength = fileSize.Length.ToString();

WriteDevice(device, "#" + fileSizeLength + fileSize, false);

// Don't set END at the end of writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);

// Write the file block to the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

int numRead = 0;

uint retCount = 0;

while ((numRead = fs.Read(readBuf, 0, TRANSFER_BLOCK_SIZE)) != 0)

{

VisaInterop.Write(device, readBuf, (uint)numRead, out retCount);

}

// Go ahead and set END on writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);

// Done with file

fs.Close();

}

else

{

// Send an empty definite block

WriteDevice(device, "#10", false);

}

}

}

// Declaration of VISA device access constants

public enum VisaAccessMode

 {

 NoLock = 0,

 ExclusiveLock = 1,

 SharedLock = 2,
58 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
 LoadConfig = 4

 }

// Declaration of VISA attribute constants

public enum VisaAttribute

 {

 SendEndEnable = 0x3FFF0016,

 TimeoutValue = 0x3FFF001A

 }

// This class provides a way to call the unmanaged Agilent IO Library VISA C

// functions from the C# application

public class VisaInterop

 {

 [DllImport("agvisa32.dll", EntryPoint="viClear")]

 public static extern int Clear(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viClose")]

 public static extern int Close(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viFindNext")]

 public static extern int FindNext(uint findList, byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viFindRsrc")]

 public static extern int FindRsrc(

 uint session,

 string expr,

 out uint findList,

 out uint retCnt,

 byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute attribute, out uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viOpen")]

 public static extern int Open(

 uint session,

 string rsrcName,

 VisaAccessMode accessMode,

 uint timeout,

 out uint vi);
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 59

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
 [DllImport("agvisa32.dll", EntryPoint="viOpenDefaultRM")]

 public static extern int OpenDefaultRM(out uint session);

 [DllImport("agvisa32.dll", EntryPoint="viRead")]

 public static extern int Read(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 [DllImport("agvisa32.dll", EntryPoint="viSetAttribute")]

public static extern int SetAttribute(uint vi, VisaAttribute attribute, uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viStatusDesc")]

 public static extern int StatusDesc(uint vi, int status, byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viWrite")]

 public static extern int Write(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 }

}

60 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
User Flatness Correction Downloads Using C++ and VISA
This sample program uses C++ and the VISA libraries to download user–flatness correction values to
the signal generator. The program uses the LAN interface but can be adapted to use the GPIB
interface by changing the address string in the program.

You must include header files and resource files for library functions needed to run this program.
Refer to the Programming Guide for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency
and amplitude values are entered via the keyboard and displayed on the console interface. The values
are then downloaded to the signal generator and stored to a file named flatCal_data. The file is then
loaded into the signal generator’s memory catalog and corrections are turned on. The figure below
shows the console interface and several frequency and amplitude values. Use the same format, shown
in the figure below, for entering frequency and amplitude pairs (for example, 12ghz, 1.2db).

Figure 15-1 FlatCal Console Application

The program uses VISA library functions. The non–formatted viWrite VISA function is used to output
data to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http:\\www.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the CD–ROM in the
programming examples section as flatcal.cpp.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 61

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
//**

// PROGRAM NAME:FlatCal.cpp

//

// PROGRAM DESCRIPTION:C++ Console application to input frequency and amplitude

// pairs and then download them to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP interface to download frequency and amplitude

// correction pairs to the signal generator. The program asks the operator to enter

// the number of pairs and allocates a pointer array listPairs[] sized to the number

// of pairs.The array is filled with frequency nextFreq[] and amplitude nextPower[]

// values entered from the keyboard.

//

//**

// IMPORTANT: Replace the 000.000.000.000 IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator.

//**

#include <stdlib.h>

#include <stdio.h>

#include "visa.h"

#include <string.h>

// IMPORTANT:

// Configure the following IP address correctly before compiling and running

char* instOpenString ="TCPIP0::000.000.000.000::INSTR";//your PSG's IP address

const int MAX_STRING_LENGTH=20;//length of frequency and power strings

const int BUFFER_SIZE=256;//length of SCPI command string

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);//open the default resource manager

 //TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);
62 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
 if (status)//if any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

printf("Example Program to Download User Flatness Corrections\n\n");

 printf("Enter number of frequency and amplitude pairs: ");

 int num = 0;

 scanf("%d", &num);

 if (num > 0)

 {

 int lenArray=num*2;//length of the pairsList[] array. This array

//will hold the frequency and amplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList array

//pairsList[n]=0;

 for (int i=0; i < num; i++)

 {

char* nextFreq = new char[MAX_STRING_LENGTH+1]; //frequency array

char* nextPower = new char[MAX_STRING_LENGTH+1];//amplitude array

//enter frequency and amplitude pairs i.e 10ghz .1db

printf("Enter Freq %d: ", i+1);

scanf("%s", nextFreq);

printf("Enter Power %d: ",i+1);

scanf("%s", nextPower);

pairsList[2*i] = nextFreq;//frequency

pairsList[2*i+1]=nextPower;//power correction

 }

unsigned char str[256];//buffer used to hold SCPI command

 //initialize the signal generator's user flatness table

 sprintf((char*)str,":corr:flat:pres\n"); //write to buffer

 viWrite(vi, str,strlen((char*str),0); //write to PSG

 char c = ',';//comma separator for SCPI command

 for (int j=0; j< num; j++) //download pairs to the PSG
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 63

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
{

sprintf((char*)str,":corr:flat:pair %s %c %s\n",pairsList[2*j], c,
pairsList[2*j+1]); // << on SAME line!

viWrite(vi, str,strlen((char*)str),0);

 }

 //store the downloaded correction pairs to PSG memory

 const char* fileName = "flatCal_data";//user flatness file name

 //write the SCPI command to the buffer str

 sprintf((char*)str, ":corr:flat:store \"%s\"\n", fileName);//write to buffer

 viWrite(vi,str,strlen((char*)str),0);//write the command to the PSG

 printf("\nFlatness Data saved to file : %s\n\n", fileName);

 //load corrections

 sprintf((char*)str,":corr:flat:load \"%s\"\n", fileName); //write to buffer

 viWrite(vi,str,strlen((char*)str),0); //write command to the PSG

 //turn on corrections

 sprintf((char*)str, ":corr on\n");

 viWrite(vi,str,strlen((char*)str),0");

 printf("\nFlatness Corrections Enabled\n\n");

for (int k=0; k< lenArray; k++)

{

delete [] pairsList[k];//free up memory

}

delete [] pairsList;//free up memory

 }

 viClose(vi);//close the sessions

 viClose(defaultRM);

 return 0;

}

64 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

NOTE The section, User FIR Filter Coefficient File Download Problems, applies to the N5162A and
N5182A with Option 651, 652, or 654; the E4438C with Option 001, 002, 601, or 602; and the
E8267D with Option 601 or 602.

The remaining sections, User File Download Problems and PRAM Download Problems, apply
only to the E4438C with Option 001, 002, 601, or 602; and the E8267D with Option 601 or
602.

This section is divided by the following data transfer methods:

“User File Download Problems” on page 65

“PRAM Download Problems” on page 67

“User FIR Filter Coefficient File Download Problems” on page 68

Each section contains the following troubleshooting information:

• a list of symptoms and possible causes of typical problems encountered while downloading data
to the signal generator

• reminders regarding special considerations and file requirements

• tips on creating data, transferring data, data application and memory usage

User File Download Problems

Data Requirements
• The user file selected must entirely fill the data field of each timeslot.

• The user file must be a multiple of 8 bits, so that it can be represented in ASCII characters.

• Available volatile memory must be large enough to support both the data field bits and the
framing bits.

Table 16 Use–File Download Trouble – Symptoms and Causes

Symptom Possible Cause

At the RF output,
some data modulated,
some data missing

Data does not completely fill an integer number of timeslots.

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file will be restarted after the last timeslot containing completely filled
data fields. For example, if the user file contains enough data to fill the data fields of 3.5
timeslots, firmware will load 3 timeslots with data and restart the user file after the third
timeslot. The last 0.5 timeslot worth of data will never be modulated.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 65

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
Requirement for Continuous User File Data Transmission

“Integer Number of Timeslots” Requirement for Multiple–Timeslots

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file is restarted after the last timeslot containing completely filled data fields.
For example, if the user file contains enough data to fill the data fields of 3.5 timeslots, the firmware
loads 3 timeslots with data and restart the user file after the third timeslot. The last 0.5 timeslot
worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer
number of timeslots.

“Multiple–of–8–Bits” Requirement

For downloads to bit and binary memory, user file data must be downloaded in multiples of 8 bits
(bytes), since SCPI specifies data in bytes. Therefore, if the original data pattern’s length is not a
multiple of 8, you need to:

• add bits to complete the ASCII character

• replicate the data pattern to generate a continuously repeating pattern with no discontinuity

• truncate the excess bits

NOTE The “multiple–of–8–bits” data length requirement is in addition to the requirement of
completely filling the data field of an integer number of timeslots.

Using Externally Generated, Real–Time Data for Large Files

When the data fields must be continuous data streams, and the size of the data exceeds the available
PRAM, real–time data and synchronization can be supplied by an external data source to the front
panel DATA, DATA CLOCK, and SYMBOL SYNC connectors. This data can be continuously
transmitted, or can be framed by supplying a data–synchronous burst pulse to the EXT1 INPUT
connector on the front panel. Additionally, the external data can be multiplexed into internally
generated framing.
66 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
PRAM Download Problems

Data Requirements
• The signal generator requires a file with a minimum of 60 bytes

• For every data bit (bit 0), you must provide 7 bits of control information (bits 1–7).

Table 17 PRAM Download – Symptoms and Causes

Symptom Possible Cause

The transmitted pattern is interspersed
with random, unwanted data.

Pattern reset bit not set.

Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your
downloaded data.

ERROR –223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Table 18 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non–bursted, non–TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1
Output

0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit
to 1. Use this output for functions such as a triggering external hardware to indicate when
the data pattern begins and restarts, or creating a data–synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 67

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
User FIR Filter Coefficient File Download Problems

Data Requirements
• Data must be in ASCII format.

• Downloads must be in list format.

• Filters containing more symbols than the hardware allows (64 for real–time and 512 for Arb) will
not be selectable for the configuration.

Table 19 User FIR File Download Trouble – Symptoms and Causes

Symptom Possible Cause

ERROR –321, Out of memory

There is not enough memory available for the FIR coefficient file being
downloaded.

To solve the problem, either reduce the file size of the FIR file or delete
unnecessary files from memory.

ERROR –223, Too much data

User FIR filter has too many symbols.

Real–Time cannot use a filter that has more than 64 symbols (512
symbols maximum for Arb). You may have specified an incorrect
oversample ratio in the filter table editor.
68 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Index
Symbols
.NET framework, 49

A
Agilent

e8663b
memory allocation, non- volatile memory, 6
memory allocation, volatile memory, 5
volatile memory types, 3

esg
memory allocation, non- volatile memory, 6
memory allocation, volatile memory, 5
volatile memory types, 3

mxg
memory allocation, non- volatile memory, 5, 6
memory allocation, volatile memory, 5
volatile memory types, 3

psg
memory allocation, non- volatile memory, 6
memory allocation, volatile memory, 5
volatile memory types, 3

B
binary

data
framed, 14
unframed, 13

file
downloads commands, 22
modifying hex editor, 24

bit
file

downloads and commands, 21
modifying hex editor, 25

order, user file, 10

C
C#

VISA, example, 50
carrier

activating, FIR filters, 48
modulating, FIR filters, 48

CDMA modulation
data, FIR filter, 47

Checking Available Memory, 7
command

format programming, user file data, 19
format user file, downloading, 18
window PC, using, 26
window UNIX, using, 26

commands
downloads, binary file, 22
downloads, bit file, 21

csc.exe, 49
custom

modulation data, FIR filter, 47
real- time, high data rates, 31
user file data, memory usage, 15

D
data

binary, framed, 14
binary, unframed, 13

data rates, high
custom, real- time, 31

data requirements, FIR filter downloads, 46
data types

binary, 2
bit, 2
defined, 2
FIR filter states, 2
PRAM, 2
user flatness correction, 2

directory, root, 5
download

binary file data, 13
bit file data, 10
FIR filter coefficient data, 46
user file data

FTP procedures, 25
unencrypted files for extraction, 44
unencrypted files for no extraction, 44

user flatness, 49
waveform data

user- data files, using, 1
downloaded PRAM files

data sources, 41
downloading

block data
SCPI command, 38
SCPI command, programming syntax, 39

downloads, PRAM data
e4438c, 33
e8267d, 33

E
examples

save and recall, 50
extract user file data, 44
extracting

PRAM files, 42

F
file size

determining
PRAM, 36
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 69

Index

minimum

PRAM, 37
PRAM, 36

file types
See data types

files
large, generating real- time data, 65
PRAM, modifying, 45

FIR
filter data

CDMA modulation, 47
custom modulation, 47
TDMA format, 47
W- CDMA modulation, 47

filters
carrier, activating, 48
carrier, modulating, 48
data limitations, 46

framed data, usage
volatile memory, PRAM, 16

FTP
commands for downloading and extracting files, 44
internet explorer, using, 26
procedures for downloading files, 25
web server procedure, 26

H
hex editor

binary file, modifying, 24
bit file, modifying, 25

I
instrument

state files
overview, 49
SCPI commands, recalling, 49
SCPI commands, saving, 49

internal
web server

FTP procedure, 26

L
list format, downloading

SCPI command, 38
location user- data file type

binary, 7
LSB and MSB, 10

M
media

external
non- volatile memory, Agilent mxg, 3

internal

non- volatile memory, Agilent mxg, 3
USB

non- volatile memory, Agilent mxg, 3
memory

allocation, 5
checking, available, 7
defined, 3
location user- data file type

available memory, checking, 7
bit, 7
FIR, 7
flatness, 7
instrument state, 7
PRAM, 7

locations, 3
signal generator, maximum, 7
size, 6
volatile and non- volatile, 3

memory usage
user file data

custom, 15
TDMA, 15

Microsoft .NET Framework
overview, 50

MSB and LSB, 10
multiple- of- 8- bits requirement

user file data, 65
multiple- timeslots

integer number of timeslots, 65

N
non- volatile memory

available
SCPI query, 8

external media, Agilent mxg, 3
internal media, Agilent mxg, 3
internal storage, Agilent mxg, 3
memory allocation, 6

Agilent mxg, 5
USB media, Agilent mxg, 3

P
PRAM

as data sources, 41
bit positions, 35
byte patterns, 35
data extracting SCPI command, syntax, 43
downloads, problems, 66
e4438c, data downloads, 33
e8267d, data downloads, 33
file size, 36

minimum, 37
file size, determining, 36
70 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

Index

files

command syntax, for restoring, 42
command syntax, for storing, 42
extracting, 42
modifying, 45
non- volatile memory, storing, 42
understanding, 34
volatile memory, restoring, 42

volatile memory
framed data, usage, 16
unframed data, usage, 16

waveform, viewing, 36
problems

user
file downloads, 64
FIR filter downloads, 67

programming
user file data

command format, 19
programming examples

C#, 50

R
real- time

data files, generating large, 65
TDMA

user files, 27
recall states, 49

S
save and recall, 49
SCPI command, programming syntax

block data, downloading, 39
SCPI command, syntax

PRAM files, extracting, 43
SCPI commands

block data, downloading, 38
extraction, 44
instrument state files, recalling, 49
instrument state files, saving, 49
list format, downloading, 38
unencrypted files, 44
user FIR file downloads

sample command line, 47
signal generator

volatile memory types, 3
state files, 49
storage

internal
non- volatile memory, Agilent mxg, 3

T
TDMA

data, FIR filter, 47
user file data, memory usage, 15

timeslots, integer number of
multiple- timeslots requirement, 65

troubleshooting
PRAM downloads, 66
user file downloads, 64
user FIR filter downloads, 67

U
unencrypted files

downloading for extraction, 44
downloading for no extraction, 44
extracting I/Q data, 43

unframed data, usage
volatile memory, PRAM, 16

user data
file, modifying, 24
files, creating, 1
files, downloading, 1
memory, 3
root directory, 5

user file data, continuous transmission
requirements, 65

user files
bit order, 10
bit order, LSB and MSB, 10
data

binary, downloads, 9
bit, downloads, 9
multiple- of- 8- bits requirement, 65

downloading
as the data source, 41
carrier, activating, 42
carrier, modulating, 42
command format, 18
modulating and activating the carrier, 24
selecting the user file as the data source, 23

framed transmissions, understanding, 27
real- time TDMA, 27
size, 14

user FIR file downloads
non- volatile memory, 46
selecting a downloaded user FIR file, 47

user flatness, 49
user- data file type

binary, memory location, 7
bit, memory location, 7
FIR, memory location, 7
flatness, memory location, 7
instrument state, memory location, 7
memory location, 7
PRAM, memory location, 7
Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide 71

Index

user- data files

See user data

V
volatile memory

memory allocation
Agilent e8663b, 5
Agilent esg, 5
Agilent psg, 5

signal generator, 3
types, signal generators, 3

volatile memory available, SCPI query, 8

W
waveform data

commands for downloading and extracting, 18–27
waveform downloads

memory
allocation, 5
size, 6

waveforms
viewing, PRAM, 36

W- CDMA modulation data, FIR filter
See FIR

web server
internal, 26
72 Agilent N516xA, N518xA, E8663B, E44x8C, and E82x7D Signal Generators Programming Guide

	Creating and Downloading User–Data Files
	Overview
	Signal Generator Memory
	Memory Allocation
	Memory Size
	Checking Available Memory

	User File Data (Bit/Binary) Downloads (E4438C and E8267D)
	User File Bit Order (LSB and MSB)
	Bit File Type Data
	Binary File Type Data
	User File Size
	Determining Memory Usage for Custom and TDMA User File Data
	Downloading User Files
	Command for Bit File Downloads
	Commands for Binary File Downloads
	Selecting a Downloaded User File as the Data Source
	Modulating and Activating the Carrier
	Modifying User File Data
	Understanding Framed Transmission For Real–Time TDMA
	Real–Time Custom High Data Rates

	Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
	Understanding PRAM Files
	PRAM File Size
	SCPI Command for a List Format Download
	SCPI Command for a Block Data Download
	Selecting a Downloaded PRAM File as the Data Source
	Modulating and Activating the Carrier
	Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory
	Extracting a PRAM File
	Modifying PRAM Files

	FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active Filter

	Save and Recall Instrument State Files
	Save and Recall SCPI Commands
	Save and Recall Programming Example Using VISA and C#

	User Flatness Correction Downloads Using C++ and VISA
	Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
	User File Download Problems
	PRAM Download Problems
	User FIR Filter Coefficient File Download Problems

